SISTEMA GENERALIZADO SDCTIE GRACELI PARA TOPOLOGIA, TERMODIN. ELETROM, QUÂNTICA, TERMOQUÂNTICA, ELETROQÂNTICA

 

TOPOLOGIA DIMENSIONAL DE GRACELI E SDCTIE GRACELI. EM FÍSICA E FÍSICA-QUÍMICA , E FÍSICA-BIOLÓGICA.

 TODO E QUALQUER SISTEMA TOPOLÓGICO FÍSICO E SISTEMA DINÂMICO E TOPOLOGIA, E MESMO DENTRO DA FÍSICA, E DA FÍSICA-QUÍMICA, OU DA FÍSICA-BIOLÓGICA, SE FUNDAMENTAM NO SDCTIE GRACELI E NAS DIMENSÕES DE GRACELI [ENERGIAS, FENÔMENOS, ESTRUTURAS, POTENCIAIS, ESTADOS FÍSICOS E QUÍMICOS DE GRACELI, E TRANSICIONAIS]. E NO SISTEMA DE DEZ OU MAIS DIMENSÕES DO SDCTIE DE GRACELI.


NÃO SE USA AS DIMENSÕES DE ESPAÇO PORQUE SÃO PARA REFERENCIAR A POSIÇÃO EM LUGARES, E O TEMPO A TRANSIÇÃO.


JÁ AS DIMENSÕES DE GRACELI SÃO PARA DETERMINARA AGENTES E FUNÇÕES ALÉM DO ESPAÇO E DO TEMPO.





TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]
     fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].

número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO].



princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmions idênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos , e  são iguais nos dois elétrons, estes deverão necessariamente ter os números  diferentes, e portanto os dois elétrons têm spins opostos.

O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.

Índice

Sumário

O princípio de exclusão de Pauli é um dos mais relevantes princípios da física, basicamente porque os três tipos de partículas que formam a matéria ordinária - elétrons, prótons e nêutrons - têm que satisfazê-lo. O princípio de exclusão de Pauli é a razão fundamental para muitas das propriedades características da matéria, desde sua estabilidade até a existência das regularidades expressas pela tabela periódica dos elementos.

O princípio de exclusão de Pauli é uma consequência matemática das propriedades do operador momento angular, que é o gerador das operações de rotação, em mecânica quântica. A permutação de partículas num sistema de duas partículas idênticas (que é matematicamente equivalente à rotação de cada partícula de um ângulo de 180 graus) deve resultar em uma configuração descrita pela mesma função de onda da configuração original (quando as partículas têm spin inteiro) ou numa mudança de sinal desta função de onda (para partículas de spin semi-inteiro). Por isso, duas partículas de spin semi-inteiro não podem estar em um mesmo estado quântico, já que a função de onda do sistema composto pelas duas teria que ser igual a sua simétrica, e a única função que atende a esta condição é a função identicamente nula.

Partículas com função de onda anti-simétrica são chamadas férmions, e obedecem ao princípio de exclusão de Pauli. Além das mais familiares já citadas - elétron, próton e nêutron - são também fermions o neutrino e o quark (que são os constituintes elementares dos prótons e nêutrons), além de alguns átomos, como o hélio-3. Todos os férmions possuem spin "semi-inteiro", o que quer dizer que seu momento angular intrínseco tem valor  (a constante de Planck dividida por ) multiplicada por um semi-inteiro (, etc.). Na teoria da mecânica quântica, fermions são descritos por "estados anti-simétricos", que são explicados em mais detalhes no artigo sobre partículas idênticas.

Um sistema formado por partículas idênticas com spin inteiro é descrito por uma função de onda simétrica; estas partículas são chamadas bósons. Ao contrário dos fermions, elas podem partilhar um mesmo estado quântico. São exemplos de bósons o fóton e os bósons W e Z.

História

No início do século XX tornou-se evidente que átomos e moléculas com elétrons emparelhados ou um número par de eletrons são mais estáveis que aqueles com um número ímpar de eletrons. Num artigo publicado em 1916 por Gilbert N. Lewis[1], por exemplo, a regra três dos seis postulados propostos pelo autor para explicar o comportamento químico das substâncias estabelece que um átomo tende a ter um número par de elétrons em sua camada de valência, sendo esse número, de preferência oito, que estão normalmente dispostos simetricamente nos oito vértices de um cubo (ver: átomo cúbico). Em 1922 Niels Bohr mostrou que a tabela periódica pode ser explicada pela hipótese de que certos números de elétrons (por exemplo, 2, 8 e 18) correspondem a "camadas fechadas" estáveis.

Pauli procurou uma explicação para estes números, que eram a esta altura apenas empíricos. Ao mesmo tempo, ele estava tentando explicar certos resultados experimentais envolvendo o Efeito Zeeman em espectroscopia atômica e no ferromagnetismo. Ele encontrou uma pista essencial em um artigo de 1924 escrito por E.C.Stoner, que estabelecia que, para um dado valor do número quântico principal (), o número de níveis de energia de um eletron no espectro de um átomo de metal alcalino posto sob a ação de um campo magnético externo, situação na qual todos os níveis de energia degenerados são separados, é igual ao número de elétrons na camada fechada de um gás nobre correspondente ao mesmo valor de . Este fato levou Pauli a perceber que os números aparentemente complicados de elétrons em camadas fechadas podem ser reduzidos a uma regra muito simples, a de que só pode haver um elétron em cada estado atômico, definido por um conjunto de quatro números quânticos. Para esta finalidade ele introduziu um novo número quântico com apenas dois valores possíveis, identificado por Samuel Goudsmit e George Uhlenbeck como o spin do eletron.

Conexão com a simetria do estado quântico

O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.

Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado  (nota) enquanto a outra está no estado  é

No entanto, se  e  são exatamente o mesmo estado, a expressão acima é identicamente nula:

Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.




Momento angular (também chamado de momentum angular ou quantidade de movimento angular) de um corpo é uma grandeza física associada à rotação desse corpo.

Deve-se dizer que, com o advento da mecânica quântica, o status da grandeza física quantidade de movimento angular sofreu uma severa modificação. A grandeza não pode, no contexto da mecânica quântica, ser definida em termos de duas grandezas que são relacionadas pelo princípio da incerteza como o raio vetor e a velocidade angular. Tais grandezas são complementares e não podem ser, simultânea e de forma totalmente precisa, determinadas. A pares de grandezas assim relacionadas dá-se o nome de grandezas complementares.

Assim sendo, a quantidade de movimento angular passou a ser entendida como a grandeza conservada sob rotações no espaço tridimensional, em decorrência da isotropia. A dedução de todas as grandezas que decorrem de simetrias geométricas (quantidade de movimento linearenergia e quantidade de movimento angular) do espaço-tempo (no contexto mais geral da teoria da relatividade) é feita através do formalismo dos geradores dos movimentos.

Índice

Momento angular de uma partícula

O momento angular de uma partícula é definido pelo produto vetorial do vetor posição  da partícula (em relação a um ponto de referência) pelo seu momento linear :[1]

Definição de momento angular (clássica)

O momento angular depende do ponto de referência escolhido. Se a referência for o ponto ocupado pela partícula (e a função que define o momento for contínua) então o momento angular é nulo. Há também outras condições para que o momento angular se anule. São elas:

  1. a massa da partícula seja nula.
  2. a velocidade da partícula seja nula.
  3. a velocidade da partícula seja paralela à sua posição em relação ao ponto de referência.

Da definição, tem-se que sua magnitude é:

onde r é o módulo do vetor-posição, p é o módulo do momento linear, v é o módulo da velocidade,  é o módulo da velocidade angular e  é o ângulo entre os vetores  e .

Momento angular de um sistema de partículas

O momento angular de um conjunto de partículas em relação a um ponto de referência é definido como a soma do momento angular de todas as partículas em relação a esse ponto. Assim:

Onde  é o momento angular da partícula i, e N é o número total de partículas.

Quando estamos tratando do momento angular total de qualquer corpo, a definição acima se transforma no limite da soma, com N tendendo a infinito:

Onde, para que o limite exista, cada  deve tender a 0. Isso é intuitivo já que estamos considerando pedaços de matéria cada vez menores, o que implica massas e momentos angulares menores. Ou seja, o momento angular de um corpo E, é definido por:





Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]

onde  denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores  como

então a entropia de von Neumann é meramente[3]

Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]

Referências




Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

,

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.

Cada α é um operador linear que se aplica à função de onda. Escritos como matrizes 4×4, são conhecidos como matrizes de Dirac. Uma das escolhas possíveis de matrizes é a seguinte:

.


Comentários

Postagens mais visitadas deste blog

MATEMÁTICA GENERALIZADA DE GRACELI.