SISTEMA GENERALIZADO SDCTIE GRACELI PARA TOPOLOGIA, TERMODIN. ELETROM, QUÂNTICA, TERMOQUÂNTICA, ELETROQÂNTICA
TOPOLOGIA DIMENSIONAL DE GRACELI E SDCTIE GRACELI. EM FÍSICA E FÍSICA-QUÍMICA , E FÍSICA-BIOLÓGICA.
TODO E QUALQUER SISTEMA TOPOLÓGICO FÍSICO E SISTEMA DINÂMICO E TOPOLOGIA, E MESMO DENTRO DA FÍSICA, E DA FÍSICA-QUÍMICA, OU DA FÍSICA-BIOLÓGICA, SE FUNDAMENTAM NO SDCTIE GRACELI E NAS DIMENSÕES DE GRACELI [ENERGIAS, FENÔMENOS, ESTRUTURAS, POTENCIAIS, ESTADOS FÍSICOS E QUÍMICOS DE GRACELI, E TRANSICIONAIS]. E NO SISTEMA DE DEZ OU MAIS DIMENSÕES DO SDCTIE DE GRACELI.
NÃO SE USA AS DIMENSÕES DE ESPAÇO PORQUE SÃO PARA REFERENCIAR A POSIÇÃO EM LUGARES, E O TEMPO A TRANSIÇÃO.
JÁ AS DIMENSÕES DE GRACELI SÃO PARA DETERMINARA AGENTES E FUNÇÕES ALÉM DO ESPAÇO E DO TEMPO.
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS] fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
x toda e qualquer forma de função ou equação em:
O princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmions idênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos , , e são iguais nos dois elétrons, estes deverão necessariamente ter os números diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
O princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmions idênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos , , e são iguais nos dois elétrons, estes deverão necessariamente ter os números diferentes, e portanto os dois elétrons têm spins opostos.
O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.
Sumário
O princípio de exclusão de Pauli é um dos mais relevantes princípios da física, basicamente porque os três tipos de partículas que formam a matéria ordinária - elétrons, prótons e nêutrons - têm que satisfazê-lo. O princípio de exclusão de Pauli é a razão fundamental para muitas das propriedades características da matéria, desde sua estabilidade até a existência das regularidades expressas pela tabela periódica dos elementos.
O princípio de exclusão de Pauli é uma consequência matemática das propriedades do operador momento angular, que é o gerador das operações de rotação, em mecânica quântica. A permutação de partículas num sistema de duas partículas idênticas (que é matematicamente equivalente à rotação de cada partícula de um ângulo de 180 graus) deve resultar em uma configuração descrita pela mesma função de onda da configuração original (quando as partículas têm spin inteiro) ou numa mudança de sinal desta função de onda (para partículas de spin semi-inteiro). Por isso, duas partículas de spin semi-inteiro não podem estar em um mesmo estado quântico, já que a função de onda do sistema composto pelas duas teria que ser igual a sua simétrica, e a única função que atende a esta condição é a função identicamente nula.
Partículas com função de onda anti-simétrica são chamadas férmions, e obedecem ao princípio de exclusão de Pauli. Além das mais familiares já citadas - elétron, próton e nêutron - são também fermions o neutrino e o quark (que são os constituintes elementares dos prótons e nêutrons), além de alguns átomos, como o hélio-3. Todos os férmions possuem spin "semi-inteiro", o que quer dizer que seu momento angular intrínseco tem valor (a constante de Planck dividida por ) multiplicada por um semi-inteiro (, , , etc.). Na teoria da mecânica quântica, fermions são descritos por "estados anti-simétricos", que são explicados em mais detalhes no artigo sobre partículas idênticas.
Um sistema formado por partículas idênticas com spin inteiro é descrito por uma função de onda simétrica; estas partículas são chamadas bósons. Ao contrário dos fermions, elas podem partilhar um mesmo estado quântico. São exemplos de bósons o fóton e os bósons W e Z.
O princípio de exclusão de Pauli é um dos mais relevantes princípios da física, basicamente porque os três tipos de partículas que formam a matéria ordinária - elétrons, prótons e nêutrons - têm que satisfazê-lo. O princípio de exclusão de Pauli é a razão fundamental para muitas das propriedades características da matéria, desde sua estabilidade até a existência das regularidades expressas pela tabela periódica dos elementos.
O princípio de exclusão de Pauli é uma consequência matemática das propriedades do operador momento angular, que é o gerador das operações de rotação, em mecânica quântica. A permutação de partículas num sistema de duas partículas idênticas (que é matematicamente equivalente à rotação de cada partícula de um ângulo de 180 graus) deve resultar em uma configuração descrita pela mesma função de onda da configuração original (quando as partículas têm spin inteiro) ou numa mudança de sinal desta função de onda (para partículas de spin semi-inteiro). Por isso, duas partículas de spin semi-inteiro não podem estar em um mesmo estado quântico, já que a função de onda do sistema composto pelas duas teria que ser igual a sua simétrica, e a única função que atende a esta condição é a função identicamente nula.
Partículas com função de onda anti-simétrica são chamadas férmions, e obedecem ao princípio de exclusão de Pauli. Além das mais familiares já citadas - elétron, próton e nêutron - são também fermions o neutrino e o quark (que são os constituintes elementares dos prótons e nêutrons), além de alguns átomos, como o hélio-3. Todos os férmions possuem spin "semi-inteiro", o que quer dizer que seu momento angular intrínseco tem valor (a constante de Planck dividida por ) multiplicada por um semi-inteiro (, , , etc.). Na teoria da mecânica quântica, fermions são descritos por "estados anti-simétricos", que são explicados em mais detalhes no artigo sobre partículas idênticas.
Um sistema formado por partículas idênticas com spin inteiro é descrito por uma função de onda simétrica; estas partículas são chamadas bósons. Ao contrário dos fermions, elas podem partilhar um mesmo estado quântico. São exemplos de bósons o fóton e os bósons W e Z.
História
No início do século XX tornou-se evidente que átomos e moléculas com elétrons emparelhados ou um número par de eletrons são mais estáveis que aqueles com um número ímpar de eletrons. Num artigo publicado em 1916 por Gilbert N. Lewis[1], por exemplo, a regra três dos seis postulados propostos pelo autor para explicar o comportamento químico das substâncias estabelece que um átomo tende a ter um número par de elétrons em sua camada de valência, sendo esse número, de preferência oito, que estão normalmente dispostos simetricamente nos oito vértices de um cubo (ver: átomo cúbico). Em 1922 Niels Bohr mostrou que a tabela periódica pode ser explicada pela hipótese de que certos números de elétrons (por exemplo, 2, 8 e 18) correspondem a "camadas fechadas" estáveis.
Pauli procurou uma explicação para estes números, que eram a esta altura apenas empíricos. Ao mesmo tempo, ele estava tentando explicar certos resultados experimentais envolvendo o Efeito Zeeman em espectroscopia atômica e no ferromagnetismo. Ele encontrou uma pista essencial em um artigo de 1924 escrito por E.C.Stoner, que estabelecia que, para um dado valor do número quântico principal (), o número de níveis de energia de um eletron no espectro de um átomo de metal alcalino posto sob a ação de um campo magnético externo, situação na qual todos os níveis de energia degenerados são separados, é igual ao número de elétrons na camada fechada de um gás nobre correspondente ao mesmo valor de . Este fato levou Pauli a perceber que os números aparentemente complicados de elétrons em camadas fechadas podem ser reduzidos a uma regra muito simples, a de que só pode haver um elétron em cada estado atômico, definido por um conjunto de quatro números quânticos. Para esta finalidade ele introduziu um novo número quântico com apenas dois valores possíveis, identificado por Samuel Goudsmit e George Uhlenbeck como o spin do eletron.
No início do século XX tornou-se evidente que átomos e moléculas com elétrons emparelhados ou um número par de eletrons são mais estáveis que aqueles com um número ímpar de eletrons. Num artigo publicado em 1916 por Gilbert N. Lewis[1], por exemplo, a regra três dos seis postulados propostos pelo autor para explicar o comportamento químico das substâncias estabelece que um átomo tende a ter um número par de elétrons em sua camada de valência, sendo esse número, de preferência oito, que estão normalmente dispostos simetricamente nos oito vértices de um cubo (ver: átomo cúbico). Em 1922 Niels Bohr mostrou que a tabela periódica pode ser explicada pela hipótese de que certos números de elétrons (por exemplo, 2, 8 e 18) correspondem a "camadas fechadas" estáveis.
Pauli procurou uma explicação para estes números, que eram a esta altura apenas empíricos. Ao mesmo tempo, ele estava tentando explicar certos resultados experimentais envolvendo o Efeito Zeeman em espectroscopia atômica e no ferromagnetismo. Ele encontrou uma pista essencial em um artigo de 1924 escrito por E.C.Stoner, que estabelecia que, para um dado valor do número quântico principal (), o número de níveis de energia de um eletron no espectro de um átomo de metal alcalino posto sob a ação de um campo magnético externo, situação na qual todos os níveis de energia degenerados são separados, é igual ao número de elétrons na camada fechada de um gás nobre correspondente ao mesmo valor de . Este fato levou Pauli a perceber que os números aparentemente complicados de elétrons em camadas fechadas podem ser reduzidos a uma regra muito simples, a de que só pode haver um elétron em cada estado atômico, definido por um conjunto de quatro números quânticos. Para esta finalidade ele introduziu um novo número quântico com apenas dois valores possíveis, identificado por Samuel Goudsmit e George Uhlenbeck como o spin do eletron.
Conexão com a simetria do estado quântico
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é
- x
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.
Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.
Momento angular (também chamado de momentum angular ou quantidade de movimento angular) de um corpo é uma grandeza física associada à rotação desse corpo.
Deve-se dizer que, com o advento da mecânica quântica, o status da grandeza física quantidade de movimento angular sofreu uma severa modificação. A grandeza não pode, no contexto da mecânica quântica, ser definida em termos de duas grandezas que são relacionadas pelo princípio da incerteza como o raio vetor e a velocidade angular. Tais grandezas são complementares e não podem ser, simultânea e de forma totalmente precisa, determinadas. A pares de grandezas assim relacionadas dá-se o nome de grandezas complementares.
Assim sendo, a quantidade de movimento angular passou a ser entendida como a grandeza conservada sob rotações no espaço tridimensional, em decorrência da isotropia. A dedução de todas as grandezas que decorrem de simetrias geométricas (quantidade de movimento linear, energia e quantidade de movimento angular) do espaço-tempo (no contexto mais geral da teoria da relatividade) é feita através do formalismo dos geradores dos movimentos.
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:
Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.
Momento angular (também chamado de momentum angular ou quantidade de movimento angular) de um corpo é uma grandeza física associada à rotação desse corpo.
Deve-se dizer que, com o advento da mecânica quântica, o status da grandeza física quantidade de movimento angular sofreu uma severa modificação. A grandeza não pode, no contexto da mecânica quântica, ser definida em termos de duas grandezas que são relacionadas pelo princípio da incerteza como o raio vetor e a velocidade angular. Tais grandezas são complementares e não podem ser, simultânea e de forma totalmente precisa, determinadas. A pares de grandezas assim relacionadas dá-se o nome de grandezas complementares.
Assim sendo, a quantidade de movimento angular passou a ser entendida como a grandeza conservada sob rotações no espaço tridimensional, em decorrência da isotropia. A dedução de todas as grandezas que decorrem de simetrias geométricas (quantidade de movimento linear, energia e quantidade de movimento angular) do espaço-tempo (no contexto mais geral da teoria da relatividade) é feita através do formalismo dos geradores dos movimentos.
Momento angular de uma partícula
O momento angular de uma partícula é definido pelo produto vetorial do vetor posição da partícula (em relação a um ponto de referência) pelo seu momento linear :[1]
Definição de momento angular (clássica)
x
O momento angular de uma partícula é definido pelo produto vetorial do vetor posição da partícula (em relação a um ponto de referência) pelo seu momento linear :[1]
xDefinição de momento angular (clássica)
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O momento angular depende do ponto de referência escolhido. Se a referência for o ponto ocupado pela partícula (e a função que define o momento for contínua) então o momento angular é nulo. Há também outras condições para que o momento angular se anule. São elas:
- a massa da partícula seja nula.
- a velocidade da partícula seja nula.
- a velocidade da partícula seja paralela à sua posição em relação ao ponto de referência.
Da definição, tem-se que sua magnitude é:
- x
O momento angular depende do ponto de referência escolhido. Se a referência for o ponto ocupado pela partícula (e a função que define o momento for contínua) então o momento angular é nulo. Há também outras condições para que o momento angular se anule. São elas:
- a massa da partícula seja nula.
- a velocidade da partícula seja nula.
- a velocidade da partícula seja paralela à sua posição em relação ao ponto de referência.
Da definição, tem-se que sua magnitude é:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde r é o módulo do vetor-posição, p é o módulo do momento linear, v é o módulo da velocidade, é o módulo da velocidade angular e é o ângulo entre os vetores e .
onde r é o módulo do vetor-posição, p é o módulo do momento linear, v é o módulo da velocidade, é o módulo da velocidade angular e é o ângulo entre os vetores e .
Momento angular de um sistema de partículas
O momento angular de um conjunto de partículas em relação a um ponto de referência é definido como a soma do momento angular de todas as partículas em relação a esse ponto. Assim:
- x
O momento angular de um conjunto de partículas em relação a um ponto de referência é definido como a soma do momento angular de todas as partículas em relação a esse ponto. Assim:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde é o momento angular da partícula i, e N é o número total de partículas.
Quando estamos tratando do momento angular total de qualquer corpo, a definição acima se transforma no limite da soma, com N tendendo a infinito:
- x
Onde é o momento angular da partícula i, e N é o número total de partículas.
Quando estamos tratando do momento angular total de qualquer corpo, a definição acima se transforma no limite da soma, com N tendendo a infinito:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde, para que o limite exista, cada deve tender a 0. Isso é intuitivo já que estamos considerando pedaços de matéria cada vez menores, o que implica massas e momentos angulares menores. Ou seja, o momento angular de um corpo E, é definido por:
- x
- v
Onde, para que o limite exista, cada deve tender a 0. Isso é intuitivo já que estamos considerando pedaços de matéria cada vez menores, o que implica massas e momentos angulares menores. Ou seja, o momento angular de um corpo E, é definido por:
- x
- v
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]
- x
Na mecânica estatística quântica, a entropia de von Neumann, nomeada em homenagem a John von Neumann, é a extensão dos conceitos clássicos de entropia de Gibbs ao campo da mecânica quântica.[1] O formalismo matemático abrangente da mecânica quântica foi apresentado pela primeira vez no livro "Mathematische Grundlagen der Quantenmechanik" publicado em 1932 de Johann von Neumann.[2] Para um sistema mecânico quântico descrito por uma matriz densidade ρ, a entropia de von Neumann és[3][4]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores como
- x
onde denota o traço e ln denota o logaritmo (natural) da matriz. E se ρ é escrito em termos de seus autovetores como
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
então a entropia de von Neumann é meramente[3]
- x
então a entropia de von Neumann é meramente[3]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]
Nesta forma, S pode ser visto como equivalente à entropia teórica de Shannon da informação.[3]
Referências
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- ,
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Cada α é um operador linear que se aplica à função de onda. Escritos como matrizes 4×4, são conhecidos como matrizes de Dirac. Uma das escolhas possíveis de matrizes é a seguinte:
- .
As equações de Madelung ou as equações da hidrodinâmica quântica são uma formulação alternativa de Erwin Madelung equivalente à equação de Schrödinger, escrita em termos de variáveis hidrodinâmicas, similar às equações de Navier-Stokes da dinâmica dos fluidos. A derivação das equações de Madelung[1] é semelhante à formulação de de Broglie-Bohm, que representa a equação de Schrödinger como uma equação quântica de Hamilton-Jacobi .
Equações
As equações de Madelung [2] são equações de Euler quânticas:[3]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a velocidade do fluxo
As equações de Madelung são derivadas escrevendo-se a função de onda na forma polar
e substituindo esta forma na equação de Schrödinger
O fluxo de velocidade é definido por
- ,
a partir do qual também descobrimos que , onde é a corrente de probabilidade da mecânica quântica padrão.
A força quântica, que é o negativo do gradiente do potencial quântico, também pode ser escrita em termos do tensor quântico de pressão.
onde
A integral de energia armazenada no tensor de pressão quântica é proporcional à informação de Fisher, que é responsável pela qualidade das medições. Assim, de acordo com o limite de Cramér-Rao, o princípio da incerteza de Heisenberg é equivalente a uma desigualdade padrão para a eficiência (estatística) das medições. A definição termodinâmica do potencial químico quântico segue do equilíbrio da força hidrostática acima . De acordo com a termodinâmica, em equilíbrio, o potencial químico é constante em todos os lugares, o que corresponde diretamente à equação estacionária de Schrödinger. Portanto, os autovalores da equação de Schrödinger são energias livres, que diferem das energias internas do sistema. A energia interna das partículas é calculada via e está relacionado com a correção local de Carl Friedrich von Weizsäcker .[5] No caso de um oscilador harmônico quântico, por exemplo, pode-se facilmente mostrar que a energia do ponto zero é o valor do potencial químico do oscilador, enquanto a energia interna do oscilador é zero no estado fundamental,. Assim, a energia do ponto zero representa a energia para colocar um oscilador estático no vácuo, o que mostra novamente que as flutuações do vácuo são a razão da mecânica quântica.
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é a densidade de massa, é o potencial quântico de Bohm e é o potencial da equação de Schrödinger. A circulação do campo de velocidade de fluxo ao longo de qualquer trajetória fechada obedece à condição auxiliar .[4]
Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicada em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula. A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.
Soluções
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. A função de onda - um objeto matemático que especifica completamente o comportamento dos elétrons em uma molécula - é central tanto para a química quântica quanto para a equação de Schrödinger. A função de onda é uma entidade de alta dimensão e, portanto, é extremamente difícil capturar todas as nuances que codificam como os elétrons individuais afetam uns aos outros. Muitos métodos da química quântica na verdade desistem de expressar a função de onda por completo, em vez de tentar apenas determinar a energia de uma dada molécula. No entanto, isso requer que sejam feitas aproximações, limitando a qualidade da previsão de tais métodos.
As soluções para a equação de Schrödinger descrevem não só sistemas moleculares, atômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A melhor das soluções, a rede neural profunda é uma maneira de representar as funções de onda dos elétrons. Em vez da abordagem padrão de compor a função de onda a partir de componentes matemáticos relativamente simples, os desenvolvedores projetaram uma rede neural artificial capaz de aprender os padrões complexos de como os elétrons estão localizados ao redor dos núcleos. Quando dois elétrons são trocados, a função de onda deve mudar seu sinal. Para que a solução funcione, essa propriedade foi construída na arquitetura da rede neural. Esse recurso é conhecido como princípio de exclusão de Pauli.[5] Além do princípio de exclusão de Pauli, as funções de onda eletrônica também têm outras propriedades físicas fundamentais, e o sucesso da abordagem PauliNet é que ela integra essas propriedades na rede neural profunda, em vez de permitir que o aprendizado profundo as decifre apenas observando os dados. Com esta abordagem de 2020, as possibilidades se abrem para resolver problemas nas ciências moleculares e materiais.[6]
Equação
Equação dependente do tempo
Usando a notação de Dirac, o vetor de estados é dado, em um instante por . A equação de Schrödinger dependente do tempo, então, escreve-se:[7]
xEquação de Schrödinger Dependente do Tempo (geral) FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em que é a unidade imaginária, é a constante de Planck dividida por , e o Hamiltoniano é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.
Equação independente do tempo
Equação unidimensional
Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[8]
- ,
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que é a função de onda independente do tempo em função da coordenada ; é a constante de Planck dividida por ; é a massa da partícula; é a função energia potencial e é a energia do sistema.
Equação multidimensional
Em mais de uma dimensão a equação de Schrödinger independente do tempo para uma partícula escreve-se:[9]
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que
Relação com outros princípios
Uma maneira mais didática de observar a equação de Schrödinger é em sua forma independente do tempo e em uma dimensão. Para tanto, serão necessárias três relações:
Definição de Energia Mecânica:
Equação do Oscilador harmônico:
Relação de De Broglie:
Onde é a função de onda, é o comprimento de onda, h é a constante de Planck e p é o momento linear.
Da Relação de De Broglie, temos que , que pode ser substituída na equação do Oscilador Harmônico:
Rearranjando a equação de energia, temos que , substituindo na equação anterior:
, definindo , temos:
Que é a Equação Independente do Tempo de Schrödinger e também pode ser escrita na notação de operadores:
, em que é o Operador Hamiltoniano operando sobre a função de onda.
Partícula em uma caixa rígida
Ver artigo principal: Partícula em uma caixa
Oscilador harmônico quântico
Ver artigo principal: Oscilador harmônico quântico
Assim como na mecânica clássica, a energia potencial do oscilador harmônico simples unidimensional é:[10]
Lembrando a relação , também pode se escrever:
Então a equação de Schrödinger para o sistema é:
Solucionando a equação de Schrödinger, obtém-se os seguintes estados estacionários:
em que Hn são os polinômios de Hermite.
E os níveis de energia correspondentes são:
Isso ilustra novamente a quantização da energia de estados ligados.
x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é o operador laplaciano em dimensões aplicado à função .
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes
A equação de Pauli é mostrada como:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
As equações de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecular, física nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para e outra para ):
- x
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Nas equações acima, é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia descreve a interação entre os dois sistemas em colisão. O Hamiltoniano descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são e seus autovalores são as energias . Finalmente, é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.
Uso
A equação de Lippmann-Schwinger é útil num grande número de situações que envolvem o espalhamento de dois corpos. Para três ou mais corpos colidindo ele não funciona bem por causa das limitações matemáticas; as equações de Faddeev podem ser utilizadas como uma alternativa.[3] No entanto, existem aproximações que podem reduzir um problema de muitos corpos a um conjunto de problemas de dois corpos numa variedade de casos. Por exemplo, em uma colisão entre elétrons e moléculas, pode haver dezenas ou centenas de partículas envolvidas. Mas o fenômeno pode ser reduzido a um problema de dois corpos, descrevendo todos os potenciais das partículas constituintes juntamente com um pseudopotencial.[4] Nestes casos, as equações Lippmann-Schwinger podem ser utilizadas. Naturalmente, as principais motivações destas abordagens são também a possibilidade de fazer os cálculos com os esforços computacionais otimizados.
Comentários
Postar um comentário